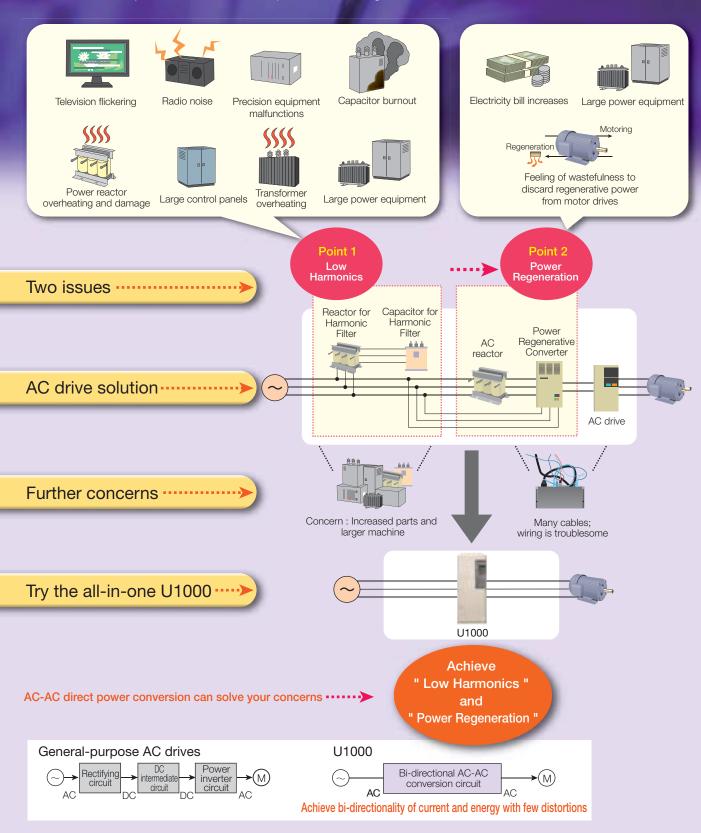
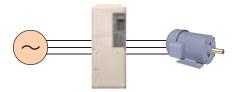


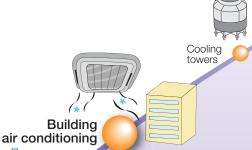
Have you ever faced these situations?

U1000 can solve all these situation



U1000




The All-in-one U1000 can achieve " Low Harmonics " and " Power Regeneration " in itself

We were the first company in the world to successfully apply and commercialize converter technology.—We released the further evolution to this in April 2014 – the Yaskawa Matrix Converter U1000. The U1000 achieves low harmonics and power regeneration in itself by AC-AC direct power conversion. It has now become possible to solve various problems affecting drive devices.

U1000 Applications

Low Harmonics

Harmonic current is generated in building air conditioning and compressors due to distortions in the input power when the inverter performs a power conversion. This may cause failure in nearby equipment and facilities. By AC-AC direct power conversion the U1000 perform a sine wave almost same as the commercial power's one without special devices.

■ Power Current Waveform Samples

Power

factor

0.75

AC drive without reactor

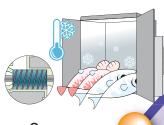
Current

distortion

88%

with DC reactor

Current Pow


(In low harmonics mode)

U1000

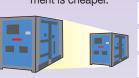
Current distortion factor 73% 0.9

AC drive

Current distortion Fower factor 5% 0.98

Compressors

Medical equipment


Data centers

Conveyors

Escalators

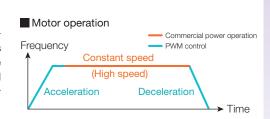
Generator Applications

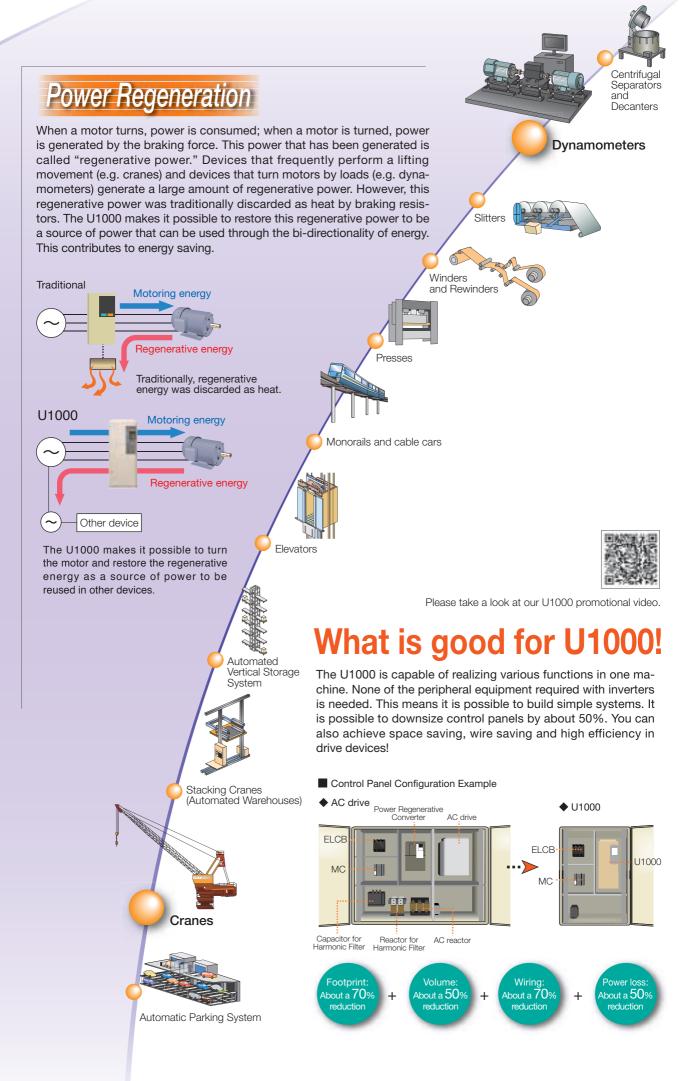
It is essential to install private generators in case of a power failure in facilities such as data centers that operate all year round and hospitals where many pieces of medical equipment are running. Vibrations and heat generation in the coils occur when harmonic components get into the generator. Therefore, the capacity of the generator has to be four times that of the inverter as a countermeasure when driven by such a device. This means capital investment becomes very expensive. The U1000 is low harmonics, so it is possible for the capacity of the generator to be about half that of the inverter. This results in it being cheaper to introduce this technology because capital investment is cheaper.

Generator capacity:
About a 50% reduction

Weight: About a 60% reduction

Installation area:
About a 50% reduction


Power Factor Improvement


The power factor is the value which indicates the efficiency of the AC power used by electric equipment. If the power factor is poor, more power than the actual power consumption is required; there has to be a certain margin in power equipment. The U1000 achieves a high power factor because it is low harmonics. It is possible to downsize the capacity of power equipment.

Power equipment capacity: About a 20% reduction Power factor: About 0.75 AC drive Power factor: About 0.98 U1000

Commercial power operation

A human sensor escalator stops when no-one is on it, but speeds up when someone approaches it and then switches to "constant speed" operation when it reaches a predetermined speed. Normally, this entire process is performed by a variable speed drive called "PWM control." However, the U1000 can switch to "commercial power operation" during "constant speed" operation that matches the power frequency. This makes it possible to achieve a reduction in energy loss and noise.

Standard Specifications

200 V Class

Model CIMR-U:::2A:::::::::::			0028	0042	0054	0068	0081	0104	0130	0154	0192	0248					
	Rated Input	ND	25	25 38		62	74	95	118	140	175	226					
	Current *1 A	HD	20	25	38	49	62	74	95	118	140	175					
l =	Rated Input	ND	12	17	22	28	34	43	54	64	80	103					
Itp	Capacity*2 kVA	HD	9	12	17	22	28	34	43	54	64	80					
Įŏ	Rated Output	ND	28	42	54	68	81	104	130	154	192	248					
Input/Output	Current *3 *4 A	HD	22	28	42	54	68	81	104	130	154	192					
Rated Ir	Overload Tolerance		HD Rating: 150% of rated output current for 60 s, ND Rating: 120% of rated output current for 60 s (Derating may be required for repetitive loads)														
2	Carrier Frequency		4 kHz (User adjustable up to 10 kHz. Derating may be required.)														
	Max. Output Voltage		Depends on input voltage														
	Max. Output Frequer	псу	400 Hz														
	Rated Voltage/Rated Freq	uency	Three-phase AC power supply: 200 to 240 Vac 50/60 Hz														
ر ا	Allowable Voltage Fluctu	uation	-15% to +10%														
ower	Allowable Frequency Flucti	uation	±3% (Frequency fl uctuation rate : 1 Hz/100 ms or less)														
۵	Allowable Power Volt	tage	less than 2%														
	Imbalance between Pha	ases	iess trian 2%														
На	rmonic Current Distortion	Rate*5		5% or less (IEEE 519)													
In	out Power Factor					0.9	98 or more (for rated loa	ad)								

- *1: Assumes operation at the rated output current. This value may fluctuate based on the power supply side impedance, as well as the input current, power supply transformer, and wiring conditions
- *2 : The rated input capacity is calculated by multiplying the power line voltage (240 V) by 1.1.
- *3: The rated output current of the drive should be equal to or greater than the motor rated current.
- *4: This value assumes a carrier frequency of 4 kHz. Increasing the carrier frequency requires a reduction in current.
- *5: When the harmonic current distortion rate is 5% or less, the maximum output voltage is calculated by multiplying input power voltage by 0.87. You must also change the parameter from the default setting.

400 V Class

М	odel CIMR-U 44	۱		0011	0014	0021	0027	0034	0040	0052	0065	0077	0096	0124	0156	0180	0216	0240	0302	0361	0414	0477	0590	0720*6	0900*6	0930*6
	Rated Input		ND	10	13	19	25	31	36	47	59	70	87	113	142	164	197	218	275	329	377	434	537	655	819	846
	Current*1	Α	HD	8.7	10	13	19	25	31	36	47	59	70	87	113	142	164	197	218	275	329	377	434	537	655	819
	Rated Input		ND	9	12	17	22	28	33	43	54	64	80	103	130	150	180	200	251	300	344	396	490	598	748	773
out	Capacity*2	kVA	HD	8	9	12	17	22	28	33	43	54	64	80	103	130	150	180	200	251	300	344	396	490	598	748
Jit D	Rated Output		ND	11	14	21	27	34	40	52	65	77	96	124	156	180	216	240	302	361	414	477	590	720	900	930
lt/	Current *3 *4	Α	HD	9.6	11	14	21	27	34	40	52	65	77	96	124	156	180	216	240	302	361	414	477	590	720	900
Rated Input/Output	Overload Tolera	HD Rating: 150% of rated output current for 60 s, ND Rating: 120% of rated output current for 60 s (Derating may be required for repetitive loads)																								
Ra	Carrier Frequer	CIMR-UA4:::0011 to 4:::0414 : 4 kHz (User adjustable up to 6 kHz. Derating may be required.) CIMR-UA4:::0477 to 4:::0930 : 3 kHz																								
	Max. Output Vo	Depends on input voltage																								
	Max. Output Fr	400 Hz																								
	Rated Voltage/Rate	Three-phase AC power supply: 380 to 480 Vac 50/60 Hz																								
7	Allowable Voltage	-15% to +10%																								
ower	Allowable Frequenc	±3% (Frequency fl uctuation rate : 1 Hz/100 ms or less)																								
۵	Allowable Powe		less than 2%																							
	Imbalance betwe	ases											1000	шап	Z /0											
На	rmonic Current Dist	Rate*5										5%	or le	ss (IE	EE 5	19)										
In	out Power Facto									0.	.98 o	mor	e (for	rate	d load	d)										

- *1 : Assumes operation at the rated output current. This value may fluctuate based on the power supply side impedance, as well as the input current, power supply transformer, and wiring conditions
- *2 : The rated input capacity is calculated by multiplying the power line voltage (480 V) by 1.1.
- *3: The rated output current of the drive should be equal to or greater than the motor rated current.
- *4: This value assumes a carrier frequency of 4 kHz. Increasing the carrier frequency requires a reduction in current.
- *5: When the harmonic current distortion rate is 5% or less, the maximum output voltage is calculated by multiplying input power voltage by 0.87. You must also change the parameter from the default setting.

U1000 Dimensions mm

Voltage CI	ass			200 V	400 V Class																				
	MR-	0028	0042 0054	0068 0081	0104	130 015	4 0192	0248	0011 0014	0021 00	027 0034	0040	0052 0065	0077	0096)124	0156 0	180 021	6 0240	0302	0361	0414	0477	0590 07	20 0900 0930
	Width (W)	250	50 264		264 4		415 490		250			264		264		415	5 4	490		695		107	70	1210	
U1000 Drive	Height (H)	480	650		81	6 9	990 1132		480			650		816		990) 1	1132		1132		159	95	1835	
	Depth (D)	360	4	20	45	0 4	-03	450	;	360			420		45	0	403	3 4	50		450		44	5	445
U1000 Standard	Width (W)	Vidth (W)																700							
Configuration Devices	Height (H)										-	_													1350
(Harmonic Filter Module)	Depth (D)										_	_													432

*: This number indicates the voltage class (2:200 V class, 4:400 V class).

Note: Optional IP20/NEMA1, UL Type1 kit is required for Enclosed Wall-Mounted (IP20/NEMA1, UL Type1) models.

DRIVE CENTER (INVERTER PLANT)

2-13-1, Nishimiyaichi, Yukuhashi, Fukuoka, 824-8511, Japan Phone 81-930-25-3844 Fax 81-930-25-4369 http://www.yaskawa.co.jp

YASKAWA ELECTRIC CORPORATION

New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan Phone 81-3-5402-4502 Fax 81-3-5402-4580 http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.

2121, Norman Drive South, Waukegan, IL 60085, U.S.A. Phone 1-800-YASKAWA (927-5292) or 1-847-887-7000 Fax 1-847-887-7310 http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil Phone 55-11-3585-1100 Fax 55-11-3585-1187 http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

185. Hauptstraße, Eschborn, 65760, Germany Phone 49-6196-569-300 Fax 49-6196-569-398 http://www.yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

9F, Kyobo Securities Bldg., 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-737, Korea Phone 82-2-784-7844 Fax 82-2-784-8495 http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151, Lorong Chuan, #04-02A, New Tech Park 556741, Singapore Phone 65-6282-3003 Fax 65-6289-3003 http://www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.

59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok 10310, Thailand Phone: +66-2-017-0099 Fax: +66-2-017-0799 http://www.yaskawa.co.th

PT. YASKAWA ELECTRIC INDONESIA

Secure Building-Gedung B Lantai Dasar & Lantai 1 Jl. Raya Protokol Halim Perdanakusuma, Jakarta 13610, Indonesia Phone 62-21-2982-6470 Fax 62-21-2982-6471 http://www.yaskawa.co.id/

YASKAWA ELECTRIC (CHINA) CO., LTD.

22F, One Corporate Avenue, No.222, Hubin Road, Shanghai, 200021, China Phone 86-21-5385-2200 Fax 86-21-5385-3299 http://www.vaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE

Room 1011, Tower W3 Oriental Plaza, No.1 East Chang An Ave., Dong Cheng District, Beijing, 100738, China Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei, 104, Taiwan Phone 886-2-2502-5003 Fax 886-2-2505-1280 http://www.yaskawa-taiwan.com.tw

YASKAWA INDIA PRIVATE LIMITED

#17/A, Electronics City, Hosur Road, Bangalore, 560 100 (Karnataka), India Phone 91-80-4244-1900 Fax 91-80-4244-1901 http://www.yaskawaindia.in

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications

© 2015 YASKAWA ELECTRIC CORPORATION